skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fujimoto, Seiji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at z = 6.5 0 0.24 + 0.03 , a moderately lensed galaxy ( μ = 2 . 9 0.2 + 0.1 ) with an intrinsic UV magnitude of M UV = 15.8 9 0.14 + 0.12 . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Free, publicly-accessible full text available August 11, 2026
  3. Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M, implying an effective stellar baryon fraction ofϵ∼ 0.2−0.5, whereϵ≡M/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM∼ 1010Mgalaxies relative toM∼ 109M—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm. 
    more » « less
  5. Abstract We present the first results from the Web Epoch of Reionization LyαSurvey (WERLS), a spectroscopic survey of Lyαemission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J< 26) galaxy candidates with photometric redshifts of 5.5 ≲z≲ 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11z∼ 7–8 Lyαemitters (LAEs; three secure and eight tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∼13%, which is broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyαemission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1 <MUV< −19.8. With two LAEs detected atz= 7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large-scale distribution of mass relative to the ionization state of the Universe. 
    more » « less
  6. Abstract We analyze the evolution of massive (log10[M/M] > 10) galaxies atz∼ 1–4 selected from JWST Cosmic Evolution Early Release Survey (CEERS). We infer the physical properties of all galaxies in the CEERS NIRCam imaging through spectral energy distribution (SED) fitting withdense basisto select a sample of high-redshift massive galaxies. Where available we include constraints from additional CEERS observing modes, including 18 sources with MIRI photometric coverage, and 28 sources with spectroscopic confirmations from NIRSpec or NIRCam WFSS. We sample the recovered posteriors in stellar mass from SED fitting to infer the volume densities of massive galaxies across cosmic time, taking into consideration the potential for sample contamination by active galactic nuclei. We find that the evolving abundance of massive galaxies tracks expectations based on a constant baryon conversion efficiency in dark matter halos forz∼ 1–4. At higher redshifts, we observe an excess abundance of massive galaxies relative to this simple model, resulting in a shallower decline of observed volume densities of massive galaxies. These higher abundances can be explained by modest changes to star formation physics and/or the efficiencies with which star formation occurs in massive dark matter halos, and are not in tension with modern cosmology. 
    more » « less
  7. Abstract We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index of T dust = 41 14 + 17 K and β = 1.7 0.7 + 1.1 , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies. 
    more » « less
  8. Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109Mblack holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth. 
    more » « less
  9. The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep HST observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4,5,6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously-undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with JWST. Using NIRCam imaging at 3.6μm and 1.5μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact, and disk-like. NIRSpec medium-resolution spectroscopy shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass - stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang. 
    more » « less
  10. Abstract The James Webb Space Telescope is now detecting early black holes (BHs) as they transition from “seeds” to supermassive BHs. Recently, Bogdan et al. reported the detection of an X-ray luminous supermassive BH, UHZ-1, with a photometric redshift atz> 10. Such an extreme source at this very high redshift provides new insights on seeding and growth models for BHs given the short time available for formation and growth. Harnessing the exquisite sensitivity of JWST/NIRSpec, here we report the spectroscopic confirmation of UHZ-1 atz= 10.073 ± 0.002. We find that the NIRSpec/Prism spectrum is typical of recently discoveredz≈ 10 galaxies, characterized primarily by star formation features. We see no clear evidence of the powerful X-ray source in the rest-frame UV/optical spectrum, which may suggest heavy obscuration of the central BH, in line with the Compton-thick column density measured in the X-rays. We perform a stellar population fit simultaneously to the new NIRSpec spectroscopy and previously available photometry. The fit yields a stellar-mass estimate for the host galaxy that is significantly better constrained than prior photometric estimates ( M 1.4 0.4 + 0.3 × 10 8 M). Given the predicted BH mass (MBH∼ 107–108M), the resulting ratio ofMBH/Mremains 2 to 3 orders of magnitude higher than local values, thus lending support to the heavy seeding channel for the formation of supermassive BHs within the first billion years of cosmic evolution. 
    more » « less